
82 

Acta Cryst. (1997). B53, 82-94 

Transferability of Empirical Force Fields in Silicates: Lattice-Dynamical Evaluation of 
Atomic Displacement Parameters and Thermodynamic Properties for the Ai2OSiO4 

Polymorphs 

TULLIO PILATI, ~ FRANCESCO DEMART1N b AND CARLO MARIA GRAMACCIOLP* 

~Centro CNR per lo Studio delle Relazioni tra Struttura e Reattivitgl Chimica, Via Golgi 19, 1-20133 Milano, Italy, 
bDipartimento di Chimica Strutturale e Stereochimica Inorganica, Universitgt degli Studi, Via Venezian 21, 1-20133 
Milano, Italy, and CDipartimento di Scienze della Terra, sez. Mineralogia, Universitg~ degli Studi, Via Botticelli 23, 

1-20133 Milano, Italy. E-mail: pila@rs6.csrsrc.mi.cnr.it 

(Received 30 January 1996; accepted 17 September 1996) 

Abstract 
A Bom-von Karman rigid-ion lattice-dynamical model, 
using empirical atomic charges and valence force fields 
derived from the best fit to the vibrational frequencies 
of a group of silicates and oxides, has been applied to 
andalusite, kyanite and sillimanite, the three naturally 
occurring Al2OSiO4 polymorphs. For andalusite there is 
good agreement with the atomic anisotropic displace- 
ment parameters (ADP's) derived from accurate crystal 
structure refinement at different temperatures and with 
the values of thermodynamic functions, such as the spe- 
cific heat and entropy. For kyanite, our calculations are 
successful in reproducing the values of thermodynamic 
functions, but not the ADP's, almost certainly due to 
the poor quality of the crystals used in the structure 
determination. For sillimanite, imaginary frequencies are 
obtained in a region of the Brillouin zone: such an 
inadequacy might be ascribed to the presence of four- 
fold coordinated A1, whose properties are considerably 
different from those of higher-coordinated A1 present in 
andalusite and kyanite. 

1. Introduction 
Following our interest in the field, which initially started 
from molecular crystals (see, for instance, Gramaccioli, 
1987, 1992; Gramaccioli & Pilati, 1992, and references 
therein), and also in line with a recent recommendation 
(Kuhs, 1992) for 'a more frequent comparison of 
theoretical calculations and experimental determinations 
of generalized ADP's' ,  we have tried to extend our 
harmonic lattice-dynamical calculations of thermal 
parameters to minerals, initially considering some oxides 
such as corundum, quartz, chrysoberyl and bromellite, 
and silicates such as the olivine group, garnets and 
diopside [Pilati, Bianchi & Gramaccioli, 1990c: from 
hereon PBG90c; Pilati, Demartin & Gramaccioli, 
1993 (PDG93); Pilati, Demartin, Cariati, Bruni & 
Gramaccioli, 1993; Pilati, Demartin & Gramaccioli, 
1994 (PDG94); Pilati, Demartin & Gramaccioli, 1995 

(PDG95); Pilati, Demartin & Gramaccioli, 1996a,b 
(PDG96a,b)]. 

On one hand, our results have emphasized the phys- 
ical meaning of the accurate crystallographic determi- 
nation of these parameters and, on the other hand, 
the possibility of wide and successful application of 
rigid-ion lattice-dynamical models to minerals using 
transferable empirical potentials has been confirmed. 
These conclusions are in agreement with several authors, 
such as for instance Rao, Chaplot, Choudhury, Ghose, 
Hastings & Corliss (1988); Dove, Winkler, Leslie, Harris 
& Salje (1992); Catti, Pavese & Price (1993); Kihara 
(1993); Ghose, Choudhury, Chaplot, Pal Chowdury & 
Sharma (1994) etc. In view of their actual physical 
meaning, the experimental estimates of ADP's can be 
considered as a source of precious information concern- 
ing the specific vibrational behaviour of every atom in 
the various directions over the whole Brillouin zone. 
Another interesting result of our calculations concerns 
the importance of zero-point motion, which in most 
cases is of the order of one third to one half of the 
total at room temperature. 

In view of a further extension of our calculations 
to more complex silicates, our attention was drawn to 
the naturally occurring phases of the aluminium silicate 
AI2OSiO4, i.e. to andalusite, kyanite and sillimanite, 
which are of considerable mineralogical and petrological 
interest. As a first example, andalusite seemed to be 
particularly useful, because its structure is relatively 
simple; good (and pure) natural crystals of this substance 
are fairly readily available and there are a number 
of reliable experimental data available for compari- 
son. These data include crystal structure determina- 
tions, even under different physico-chemical conditions 
(Burnham & Buerger, 1961; Ralph, Finger, Hazen & 
Ghose, 1984; Winter & Ghose, 1979: here onwards 
WG), Raman and IR spectra (Iishi, Salje & Werneke, 
1979, here onwards ISW; Salje & Werneke, 1982, here 
onwards SW; Winkler & Buehrer, 1990, here onwards 
WB), phonon dispersion curves (WB) and thermody- 
namic functions (SW; Robie & Hemingway, 1984; Salje, 
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1986). Apart from experimental work, there are also 
lattice-dynamical calculations for andalusite, performed 
by a number of authors using different potentials (ISW; 
SW; WB; Winkler, Dove & Leslie, 1991); therefore, 
a comparison between the results of various authors 
and our own was also considered to be useful and 
interesting. 

2. Experimental 

For comparison with our calculations, the possibility 
of using accurately determined experimental sets of 
ADP's, in addition to those already available in the 
literature, was considered. Accordingly, a crystal of 
gem-grade andalusite from Val Chiavenna measuring ca 
0.11 × 0.15 x 0.17 mm was mounted on a Nonius CAD- 
4 diffractometer, using~raphite-monochromated Mo Ko~ 
radiation (A = 0.71073 A). The crystal was found to be 
essentially pure by examining it in an Hitachi $2400 
SEM (scanning-electron microscope) equipped with 
an energy-dispersion spectrometer (EDS). Andalusite 
is orthorhombic, with space group Pnnm. The unit- 
cell parameters at room temperature are a = 7.7992 (6), 
b=7 .9050(6) ,  c=  5.5591 (5)/~, derived from a least- 
squares fit of 25 independent reflections with 0 ranging 
from 16.9 to 17.3 ° . For crystal structure refinement, 
reflections up to a 0 value of 40 ° were collected. 
A total of 2388 diffracted intensities were collected 
at room temperature (295+2  K) with variable scan 
speed (maximum scan time for each reflection: 60 s) 
by exploring the reciprocal space with - 1 4 < h < 1 4 ,  
0 < k <  14 and 0 < l <  10. The diffracted intensities 
were corrected for Lorentz-polarization and absorption 
(Walker & Stuart, 1983): the transmission factors were 
in the range 0.92-1.06. After averaging the symmetry- 
related data, which had an agreement of 1.3% based 
on Fo, 1135 independent reflections were obtained. Of 
these, 875 with 1>3o( / )  and 0 > 15 ° were considered in 
the structure refinement (the latter limitation to reduce 
the effect of secondary extinction and also to avoid 
dependence on atomic charge as far as possible in 
the choice of scattering factors). Scattering factors for 
neutral atoms and anomalous-dispersion corrections for 
scattering factors were taken from International Tables 
for X-ray Crystallography (1974). The refinement of 
the structure was carried out by full-matrix least- 
squares, using the SDP crystallographic programs 
(B. A. Frenz & Associates Inc., 1983), and minimizing 
the function Ew(IFol-IF, I) 2. The final weights were 
assigned equal to 1/cr2(F) = 4//0"2(/); the variance of each 
~r2(/) reflection was assigned according to the function 
a(Fo)=[o'2(1)+(k/)2]u2/2FoLp, where 0"2(/) is the 
variance derived from counting statistics and k (= 0.02) 
is a coefficient for improving the goodness-of-fit. The 
estimates of ADP's  can be strongly affected by various 
effects, such as absorption, secondary extinction and 

Table 1. Positional parameters for andalusite and their 
e.s.d. 's 

x y z 

Si 0.24606 (3) 0.25217 (3) 0.0 
All 0.0 0.0 0.24196 (4) 
AI2 0.37054 (3) 0.13900 (3) 1/2 
O(A) 0.42326 (8) 0.36293 (7) 1/2 
O(B) 0.42438 (8) 0.36293 (7) 0.0 
O(C) 0.10280 (7) 0.40022 (7) 0.0 
O(D) 0.23064 (5) 0.13397 (5) 0.23948 (8) 

Parameters without e.s.d. 's are symmetry fixed. 

truncation errors in integrated intensity measurements 
[see, for example, Denne (1977) and Eisenstein (1979)]. 
Accordingly, in the final refinement the coefficient g of 
secondary extinction was introduced (Stout & Jensen, 
1968). The crystal structure was separately refined using: 
(a) data uncorrected for absorption; (b) data corrected 
using the ~-scan method; (c) data corrected, by the 
method of Walker & Stuart (1983). For all atoms 
the differences between the corresponding ADP's  of 
the three sets were less than 3o and for this reason 
absorption was confirmed to be almost negligible in this 
particular case; similarly, extinction (g = 8.9 x 10 4 )  is 
not particularly high and it has practically no influence 
on the values of the ADP's. For use in structure 
refinement, the third set of data was preferred, because it 
corresponded to the lowest R in merging the equivalent 
reflections. The final values of the R index equals 
EIIFoI-IF,.II/~IFol and of the corresponding weighted 
index, wR= [Ew(IFoI-IFcI)2/EIFo21] u2, are 0.014 and 
0.018, respectively. The atomic coordinates are reported 
in Table 1.* In the final difference synthesis, no peak 
exceeding 0 .4e/~  -3 was found. The final value of 
the goodness-of-fit was found to be 0.938. The ratio 
EFo/EF, as a function of 0, as evaluated by considering 
groups of 100 reflections, varies from 0.980 to 1.013, 
showing no evident trend; this indicates that truncation 
errors are not important here. 

For kyanite we also tried to collect a new set 
of experimental data. However, in spite of repeated 
attempts on selected material from different occurrences 
(Brazil, Pizzo Forno in Canton Ticino), we were 
not able to obtain a crystal good enough for our 
requirements, since the mosaic spread of the reflections 
was too large; this inconvenience was due to the almost 
plastic behaviour of the material, which prevented 
adequate cutting to reduce the size. This phenomenon is 
identical to that encountered by other authors (see, for 
instance, WG) and is very probably the reason why the 
calculated ADP's  for kyanite strongly disagree with the 
corresponding experimental estimates (see below). 

* Lists of geometric parameters and structure factors have been 
deposited with the IUCr (Reference: CR0515). Copies may be obtained 
through The Managing Editor, International Union of Crystallography, 
5 Abbey Square, Chester CHi 2HU, England. 
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3. Procedure of calculation 

Our calculations proceed according to a classic rigid- 
ion lattice-dynamical model, extended to the whole 
Brillouin zone (for details, see for instance PBG90c; 
Pilati, Bianchi & Gramaccioli, 1990a,b: from hereon 
PBG90a,b). Following a well established scheme, from 
the second derivatives of the potential energy with 
respect to the positional coordinates of all the atoms in 
the primitive unit cell [multiplied by exp(27riq.r), where 
q is the wavevector and r is the vector distance between 
two interacting atoms], dynamical matrices are built (one 
for each value of q). The square roots of the eigenvalues 
of these matrices correspond to the vibrational frequen- 
cies vi(q) of the various normal modes, whereas the 
components of the eigenvectors characterize the shift and 
the phase of each particular atom in the normal mode. 

From these calculated vibrational frequencies 
extended to all the Brillouin zones the phonon density° 
of-states can be evaluated; then, on applying statistical 
thermodynamics via the vibrational partition function, 
the values of thermodynamic functions such as the 
vibrational energy E~, entropy S or the specific heat 
at constant volume C~ can be easily obtained at 
different temperatures; from the average energy of each 
vibrational mode Ei(q) and the eigenvectors of the 
dynamical matrices D(q), ADP's (as U's) can also be 
readily calculated [see, for instance, Willis & Pryor 
(1975)]. In particular, the following expressions are 
important for our purposes 

Ei(q) = hvi(q)( 1 + {exp[hvi(q)/kT] - 1 }-l) (1) 
Z 

and also 

Ev = Ei,qEi(q) (2) 

U(p) = (Nmp) -l Ei.qEi(q)[27rvi(q)]-2e(p[iq)[e* (p[iq)] ' 
(3) 

S = E,,/T- 3REi.qgi(q)In[l - exp(h.i(q)/kT)]A.i(q) (4) 

C,, = OE,,/OT, (5) 

where Ei(q) is the average energy for a certain i(q) 
mode relative to a certain value of the wavevector q, 
which is also the contribution of the mode to the total 
vibrational energy, U(p) is the ADP tensor relative to 
the atom p, h and k are the Planck and Boltzmann 
constants, respectively, T is the absolute temperature, N 
is Avogadro's number and e(pliq) are the mass-adjusted 
polarization vectors of the atom in the unit cell, which 
are part of the eigenvectors of D(q). Here gi(q) is a 
phonon density-of-states function, normalized so that 
Ei.qgi(q)Al/i(q) = 1. 

Sometimes the same density-of-states is used for a 
whole range of different temperatures. Following this 
approximation, apart from a very notable reduction of 
the computing time, there is no need to use atomic 

coordinates and unit-cell parameters taken from a series 
of different sets of crystal structure data, each perti- 
nent to certain physico-chemical conditions (such as 
temperature and pressure). The results in Tables 5-7 
have been obtained in this way, starting from room- 
temperature data, and corrections to the calculated values 
of thermodynamic functions have been performed as 
explained below. 

On comparing expressions (1)-(5), it is clear that, 
for instance, if the vibrational energy is calculated too 
low, other thermodynamic functions such as S and Cv 
and the estimates of the U's would also be too low. 
Instead, if the frequencies are calculated too low, the 
functions Ev, S, Cv and the U's would be estimated too 
high. This observation is fundamental for our purposes 
(see below), since it provides a mutual check between 
different physical properties. 

An important possibility is also that of deriving or 
optimizing the empirical potentials, so that the best fit to 
some particular experimental data (such as, for instance, 
the vibrational frequencies of a group of minerals) is 
obtained. For this purpose, the program VAO4A (QCPE 
program number 60; Powell, 1965) has been employed. 
Most of the experimental data used in the optimization 
process are Raman and IR spectra; whenever they are 
available, such as, for example, for quartz, forsterite and 
andalusite, the lowest branches of the phonon dispersion 
curves could also be considered. Since the rigid-ion 
model is not fully adequate in reproducing the high- 
est frequencies (whose contribution to the ADP's and 
thermodynamic functions is, however, negligible), an 
appropriate weight (inversely proportional to the square) 
was assigned to each experimental frequency. 

For the lattice-dynamical calculations, a computing 
program has been written entirely by us; our routines 
include a number of new methods, involving, for 
example, the evaluation of Coulombic lattice sums 
or the uneven sampling of the Brillouin zone to 
obtain a fast convergence (Filippini, Gramaccioli, 
Simonetta & Suffritti, 1976; PBG90a,b). The program 
input essentially consists of experimental crystallo- 
graphic data (unit-cell parameters and atomic fractional 
coordinates, symmetry space-group operations) and 
energy-determining information, such as the atomic 
charge, type of valence force-field (VFF) empirical 
potential and its parameters. 

Concerning the nature of the empirical potentials, for 
atom-atom interactions we presently prefer Morse func- 
tions instead of '6-exp' functions and/or fixed stretching 
constants, as we used in our earlier works. The advantage 
of these Morse potentials was already evident for quartz, 
where the agreement with the experimental vibrational 
frequencies was definitely improved (PDG94). In our 
latest sets of potentials, bending constants of all metal- 
centred bond angles which had not been considered 
previously were also introduced, improving the general 
fit, as a result, for some minerals, such as grossular 
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Table 2. Empirical potentials used here 

Atomic charge (electrons) 
Si -1.418 
AI - 1.482 
Ca - 1.337 
O Calculated by difference to respect charge balance 

Stretching potentials (Morse functions) 
A (kJ mol -l)  B (,~-1) C (,/~k) 

Si- -O 2798.030 0.75624 1.64173 
A1-- O 264.3066 1.37406 1.90997 
O - - O  (< 5.50,~,) 5.97077 0.85146 3.67660 

Bending potentials (mdyn/~ rad -2) 
A B C 

O - - S i - - O  0.12569 -0.62573 1.11716 
O - - A I - - O  0.48290 0.65945 0.04747 
A I - - O - - A I  0.12007 
A I - - O - - S i  0.18120 
S i - - O - - S i  0.13883 

Bending-stretching (mdyn rad- 1) 
A B 00 

O - - S i - - O / S i - - O  0.10091 -0.05480 109.47 
O - - A I - - O / A I - - O  0.14044 -0.00149 90.0 

Stretching-stretching (mdyn A- 1) 
S i - -O/S i - -O  0.11538 
A1--O/AI--O 0.04744 

Parameters A, B and C for Morse functions as: Energy= 
A{exp[-2B(r- C)] - 2exp[-B(r - C)]}, where r is the distance. 
Constants K for bending as: K = A + B cos 0 + C cos 2 0, where 0 is 
the angle. When B and/or C are not given, they are zero. For bending- 
stretching K = A + B(O - 00). The potentials have been derived from 
best fit to quartz, bromellite (BeO), chrysoberyl (A12BeO4), corundum 
(a-A1203), members of the olivine group (forsterite ~-Mg2SiO4, 
tephroite Mn2SiO 4, monticellite CaMgSiO 4, fayalite F e 2 S i O 4 ) ,  

andalusite and some garnets (pyrope Mg3AI2Si3012 and andradite 
Ca3Fe2Si30~2): see PDG94, PDG95. 

and diopside, a very good agreement with the observed 
vibrational spectra was obtained, although no experi- 
mental data actually to the mineral were considered in 
deriving the potentials. A more detailed discussion about 
these arguments is given in PDG95 and PDG96a,b.  

Owing to the basic difference between O - - - X - - O  
angles of almost 180 or 90 ° , as they are found in 
octahedra, and also to the notable deformation of  the 
oxygen polyhedra around the A1 atoms in andalusite, 
which contains both six- and fivefold coordinated 
Al, bond-bending potentials stongly depend on the 
value of  the angle which has been introduced (see 
Table 2). 

To evaluate thermodynamic functions such as the 
specific heat Cv and the entropy S, the vibrational 
partition function and its derivatives are derived from 
the phonon density-of-states as obtained from lattice 
dynamics.  Since the specific heat is usually measured at 
constant pressure (Cp) and not at constant volume (Cv), 
the well known thermodynamic relationship between Cp 
and Cv is used 

Up - Cv = oz2TVKT, (6) 

where o~ is the volume expansion coefficient, V is the 
volume of the substance and Kr is the bulk modulus• 
Since the volume expansion is linked to anharmonicity,  
the above expression is sometimes regarded as a partial 
correction for anharmonic behaviour. If C~ is evaluated 
using crystal structure data taken at a different temper- 
ature (such as, for instance, those at room conditions 
in the case of elaboration of thermodynamic data for 
a whole temperature range using the same density of 
states), then the calculated values should be corrected; 
however,  the correction is usually negligible unless 
there is a notable variation of the thermal expansion 
coefficient or of the bulk modulus [see expression (10) 
and discussion below]. 

The problem of evaluation of entropy S from the par- 
tition function and the density of states is also delicate• 
Using the same procedure we have proposed for diopside 
(PGD96b)  the following path is considered 

(1) T = 0 K, V = V0 ---, (2) T = 0 K, V = 1/298 --~ 

(3) T= 298 K, V= V298 ~ (4) T= T~, V= Vi, 

where T and V are the temperature and the volume of 
the substance; V0 is the equilibrium volume at 0 K at 
a given pressure (say, for instance, 1 atm); V298 is the 
equilibrium volume at 298 K and 1 atm; V] is the volume 
at temperature Ti and 1 atm pressure. Since entropy is 
a function of state, its variation is independent of the 
method chosen to change conditions• It will be 

S(4) - S(1) = S(2) - S(1)+  S(3) - S(2)+  S(4) - S(3) 
298 

= S(2) - S(1) + C,,(298)/TdT 
.! o /(' + Cp/TdT, (7) 

• 98 

where the last two steps are performed at constant vol- 
ume (V298) or at constant pressure (1 atm), respectively, 
and Cv(298) indicates the value of  Cv at temperature 
T, but with volume = 1/298. Owing to the third law of 
thermodynamics S(1) and S(2) are both zero (assuming 
there is no disorder and the crystal is pure). Therefore, 
equation (7) can be rewritten as 

S(4) = S(Ti,Vi) = Cv(298)/TdT 

+ (c~ - C ~ ) / r d r  
• 98 

+ [cu  - C , ( 2 9 8 ) l / r d r .  (a) 
98 

In expression (8) shown above the first term corre- 
sponds to the lattice-dynamical estimate of  S at tem- 
perature Ti, obtained using the volume (in practice, the 
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crystal structure data) at 298 K. The second term, taking 
account of (6), can be written as 

Ti (Cp - Cv)/TdT= o~2VKvdT. (9) 
98 8 

It should be noted besides that V, o~ and Kr are usually 
derived from crystallographic measurements and this 
derivation is a good example of applying crystallography 
to thermodynamics. The third term in (8) accounts for 
the variation of the specific heat Cv with respect to the 
volume. However, according to classic thermodynamics, 
we have 

( OCv / O V)T -" T[ O( OLKT)/OT]v. (10) 

Therefore, if the product of the expansion coefficient 
and the bulk modulus may be regarded as temperature- 
independent, Cv becomes volume-independent and con- 
sequently there would be no difference between C~ and 
Cv(298). Accordingly, since even the volume V and a are 
not subjected to extensive variations with temperature, 
we have 

f0 S(Ti) = C~(298)/TdT+ (Cp - C~)/TdT 
98 

~_ C~(298)ITdT+ c~2V298Kr(r - 298). (11) 

If the temperature dependence of c~ and Kr is known, 
as it is in several cases, then not only a better estimate 
of expression (11) can be obtained, but in principle the 
third term in expression (8) might also be calculated. For 
instance, assuming a linear dependence of the variables 
upon volume and temperature, from expression (10) we 
have 

C v -  Cv(298) ~T[O(c~Kr)/OT](V- V298) 

= T(o~V)298[O(OzKT)/OT](T- 298), 

where (o~V)298 is the value of the product c~V at 298 K. 
Therefore 

1 
[Cv-Cv(298)]ITdT ~-- ~(~V)298 

x [O(aKr)/OT](T- 298) 2. (12) 

If Ti = 298 K the last integral in (11) is zero, as well as 
expression (12), and in this case the calculated lattice- 
dynamical value of entropy, which corresponds to the 
first term in (8) or (11), is indeed exactly equivalent 
to fjr, Cp/TdT. The same happens for any temperature 
corresponding to that of the crystal structure used in 
the lattice-dynamical model. In any case, the above 
described procedure [equation (11)] is a reasonable 
approximation which may be particularly useful when 

no data except those at room temperature are available 
and only a certain range of temperatures is considered, 
where the values of the volume expansion coefficient 
a and the bulk modulus remain reasonably close to the 
corresponding values at 298 K. In some cases, however, 
especially at low temperature, a is far from being 
constant (for instance, at T= 0 K according to the third 
law a = 0) and in these cases an accurate evaluation 
of the integrals in (9) and (12) should be properly 
considered. 

A delicate point in this procedure is the assumption 
that the vibrational spectra are temperature-independent 
at constant volume, i.e. (see also above) on these 
grounds for these purposes the unit-cell data and their 
variation with temperature should be more important 
than a detailed knowledge of atomic coordinates. This 
assumption seems to be reasonable, since at constant 
volume the interatomic distances and bond angles which 
characterize the values of the frequencies through the 
force field are not liable to significant change on varying 
temperature. In any case, on performing calculations 
using accurate crystal data pertinent to certain physical 
conditions (temperature and pressure), then S(2) is 
always zero, independent of the crystal structure data 
(both unit-cell parameters and atomic coordinates), and 
the lattice-dynamical estimate for entropy corresponding 
to the first term of (8)for  these conditions only needs 
no further correction. 

As we have seen, at least some approximate cor- 
rections should be used for entropy or thermodynamic 
functions in general when the crystal structure used as 
a model does not correspond to the same temperature 
for which the calculations are performed, whereas no 
simple correction of this kind seems to be possible for 
the ADP's. However, since the experimental values of 
ADP's are rarely very accurate and, in any case, in 
this respect they are never comparable to the values of 
thermodynamic functions nor are they directly linked to 
important physico-chemical properties of the materials, 
here, no need to introduce more sophisticated corrections 
is envisaged. 

Furthermore, here, no attempt has been made to derive 
from the empirical potentials the equilibrium conforma- 
tion as a minimum of the free energy (or at least of 
the energy) under different conditions. Such calculations 
have actually been carried out by several authors (Price 
& Parker, 1988; Catlow, 1988; Dove, 1989; Winkler, 
Dove & Leslie, 1991; WB; Dove, Winkler, Leslie, Harris 
& Salje, 1992); however, our present potentials have 
been accurately refined only with respect to the second 
derivatives and the possibility of extending them also 
to account for first derivatives is actually being consid- 
ered. Our philosophy is that such an extension should 
be mainly regarded as finding appropriate integration 
constants for our present expressions and, therefore, 
no variation in second derivatives and their consequent 
applications (such as the results in this paper) should 
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follow; now we can only assume that the potentials 
(whatever they are) should correspond to the observed 
structure, as a free-energy minimum. 

Although such an assumption might appear as rather 
restrictive, it, however, does save a very considerable 
amount of computing, at present the only scope of our 
work being the derivation of vibrational frequencies and 
their applications, starting from crystal structure data as 
unit-cell parameters, symmetry operations and atomic 
coordinates, omitting any a p r i o r i  modelling. If success- 
ful, even such a restrictive application might properly 
emphasize the importance of accurate crystallographic 
work for thermodynamic and spectroscopic applications 
in various disciplines. 

Table 3. Vibrational spectra (cm -1) at r o o m  t e m p e r a -  
ture  

A~ 

Blu(TO) 

4. Discussion ,L 

The results are shown in Tables 3-8. Agreement with 
the experimental Raman and IR spectral data is espe- 
cially good for the medium-low frequencies (usually 
within 10 cm -l), where the experimental errors are less 
pronounced than for the lowest ones and where the 
rigid-ion model is reasonable, as opposed to the high- 
est frequencies. Probably also owing to experimental B~g 
difficulties, the agreement is consistently better for the 
Raman data with respect to the IR. On the whole, 
the interpretation of the frequencies in the spectra as 
fundamental given by the other authors who studied 
the problem (ISW; SW; WB) is essentially confirmed, 
although our calculations on the whole give a better 
agreement with the experimental data; the calculated 
values by WB being generally too low and those by 
ISW rather too high (with the only exception of the 
B3~- and most of the B2g-modes, where the agreement 
is very good with ISW's calculations). Due to the 
strong connection with thermodynamic functions and 
ADP's [see above, or also, for instance, Willis & Pryor B2~ 
(1975)], the good agreement of our calculated values 
for such data (see below) gives a substantial proof in 
favour of our interpretation, since if the frequencies were 
consistently too low or too high (especially the lowest 
ones, which are the most important contributors), then 
the calculated values of entropy and of the ADP's would 
result notably too high or too low, respectively. In spite 
of a general good agreement, there are a few exceptions: 
for instance, according to our model there should be 
an Ae-frequency at ca  430 cm -~, whereas the observed B3g 
one at 834 cm -I should not be a fundamental; similarly, 
there should be an additional low-frequency B3e-mode 
around 100cm -~ and another B3u-mode around 200 
cm -l (in agreement with the calculations of the other 
authors) etc.;  rather than indicating and discussing the 
single cases one by one, the general situation is best 
reported in Table 3. For all the substances considered 
here, the agreement concerning the LO modes seems 
to be less satisfactory. The calculated frequencies of 
the phonon dispersion curves along the [001] direction 

Obs(l) 

242 
291 
322 
360 

452 
553 
573 
629 
718 
798 
834 
921 
951 

1065 

243 
277 
337 

362 

474 
515 
550 
605 
721 
833 
891 
953 

1044 
1113 

192 

295 
325? 

375 
390 

410? 
490? 

561 
649 
931 

203 
208 
310 
325 
405 
420 
487 

665 
980t 
156" 
279 

Obs(2) 

106" 

211 

Calc(1) Calc(2) Calc(3) 

235 209 278 
268 242 313 
315 286 394 
365 324 408 
431 426 449 
447 447 462 
530 540 513 
562 543 
587 619 581 
668 687 700 
770 786 786 

803 
929 819 920 
948 906 1026 

1010 940 1108 
209 193 
247 223 
296 259 
373 313 
455 471 
549 548 
596 639 
677 671 
981 874 
246 220 287 

256 345 
320 319 377 
343 
373 393 427 
396 
455 425 435 
503 475 478 
571 573 499 
635 604 580 
684 687 617 
755 778 669 
932 800 784 
994 867 921 

1030 931 1032 
1012 i112 

195 162 192 
214 
247 
278 

400 
442 
487 
566 
627 
976 
104 
196 
217 
331 
365 

450 
513 
569 
655 
970 
154 
321 

193 
234 
308 
389 
437 
489 
617 
638 
887 

87 
185 
247 
322 
377 
418 
517 
603 

654 
870 
139 
268 

271 
324 
375 
382 
426 
484 
561 
642 
948 
190 
212 
301 
339 
407 
429 
504 
595 

634 
946 
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Table 3 (cont.) 

Obs(1) Obs(2) Calc(1) Calc(2) 

459 457 359 392 
490? 496 409 
585 565 609 
612 617 589 618 
672 660 697 658 
936 967 860 

B2~ (TO) 185 180 220 
290 247 228 
302 303 302 307 
352 358 359 339 
385 387 408 
425 407 458 
522 520 483 523 
565 561 567 574 
653 656 621 676 
673 640 720 
690 690 726 789 
905 885 828 
968 974 943 868 

1020 1079 956 900 
B3u (TO) 192 207 

221 257 239 
290 258 276 
308 321 
368 348 
389 390 389 390 
445 444 442 
480 480 489 542 
522 539 562 
595 625 696 
738 738 692 729 
775 709 755 
888 894 896 797 
938 951 931 875 
990 960 929 

BI~(LO) 192 154 139 
279 323 269 
463 363 399 

515 424 
585 566 611 
665 661 643 
700 697 732 

1059 1026 994 
B2~(LO) 185 181 221 

248 228 
302 314 

361 362 348 
391 421 

471 415 490 
525 485 535 
575 593 579 
660 621 694 
705 717 765 
775 726 799 

887 828 
1064 943 868 
1087 993 i 027 

B3u(LO ) 196 209 
224 258 240 
290 272 296 
308 321 
371 357 
402 393 392 
475 486 534 
508 519 556 
567 558 563 

Calc(3) 

Table 3 (cont.) 

Obs(l) Obs(2) Calc(l) Calc(2) 

602 626 701 
749 693 743 
795 719 761 
960 897 875 
953 952 926 

1025 993 955 

Calc(3) 

Obs(l) single crystal data from ISW and SW; Obs(2) Fourier- 
transform IR data on powder by WB. Calculated values Calc(l) by us, 
Calc(2) by WB, using a shell model and the potentials given by 
Winkler, Dove & Leslie (1991); Calc(3) by ISW, using a rigid-ion 
model. * Data from neutron inelastic scattering in WB; for the 
lowest Blu frequency the corresponding IR measurement is given as 
192cm -~ by ISW and SW. t 9 2 7 c m  -l in WB. 

Table 4. Frequencies in the phonon dispersion curves 
along [001] (cm -1) 

q A4 A3 A1 A3 A1 A3 

0,0,0.1 Obs 35 35 60 109 158 217 
Calc 30 32 59 107 158 214 

0,0,0.2 Obs 64 64 115 115 169 231 
Calc 59 63 112 114 172 221 

0,0,0.3 Obs 98 98 148 122 198 
Calc 86 92 148 123 202 215 

0,0,0.4 Obs 112 112 171 123 206 
Calc 108 116 169 135 239 202 

0,0,0.5 Obs 125 125 143? 188 188 
Calc 120 121 150 151 260 175 

Observed data from Fig. 5 in WB. Symmetry labelling from our 
calculations only (not assigned in the experimental measurements). 

are reported in Table 4, together with the corresponding 
experimental and calculated values reported by WB; here 
the agreement is quite good. 

ADP's at room temperature (298 K), calculated for all 
the independent atoms in the crystal structure using our 
empirical potentials reported in Table 2, are shown in 
Table 5. For comparison, in the same table the corre- 
sponding experimental data obtained from other crystal 
structure refinements are also reported. The first set of 
such data, here countersigned as obs(1) is our own; the 
second set [obs(2)] was obtained by WG. All these data 
were derived from refinement of the crystal structure 
of pure natural samples. The excellent agreement with 
the experimental results even at different temperatures 
once again prove the essential correctness and physical 
significance of our lattice-vibrational model, empirical 
potentials and of the experimental ADP's, as they are 
obtained from accurate crystal structure refinement and 
are in complete correspondence with a series of similar 
results we obtained for organic molecular crystals and 
for a number of other minerals (Gramaccioli, 1987; 
PDG90c; PDG93; PDG94; PDG95; PDG96a,b). Here, 
particularly remarkable is the U33 parameter for O(C), 
which is much higher than either Utl or U22 for the same 
atom and the corresponding values for all the other O 
atoms in the structure: such a situation is also perfectly 
reproduced in the calculated values. 
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T a b l e  5. Anisotropic  and  equivalent  d i sp lacement  
parameters  ( x 104) f o r  andalusi te  

The temperature factor is in the form: 
T = exp[-2zr2(Ullh2a .2 + ... + 2U23klb*c*)]. 

U 11 U 12 U 13 U 22 U 23 U 33 Ueq 

Andalusite (298 K) 

T a b l e  5 (cont . )  

U |1 U 12 U 13 U 22 U 23 U 33 Ueq 

AI2 Calc 119 - 7  0 104 0 130 118 
Obs(2) 102 - 3  0 158 0 124 128 

Si Calc 97 - 4  0 98 0 95 97 
Obs(2) 102 3 0 136 0 106 115 

O(A) Calc 200 -34  0 101 0 113 138 
All Calc 68 18 0 43 0 28 46 Obs(2) 188 -30  0 158 0 127 158 

Obs(1) 69 17 0 51 0 37 52 O(B) Calc 118 -30  0 127 0 106 117 
Obs(2) 65 16 0 92 0 36 64 Obs(2) 126 -47  0 215 0 120 154 
Z.p. 28 6 0 21 0 16 22 O(C) Calc 105 7 0 98 0 374 192 

AI2 Calc 37 - 2  0 33 0 40 37 Obs(2) 99 12 0 149 0 402 217 
Obs(l) 36 0 0 45 0 46 42 O(D) Calc 159 -36  -22  162 27 104 142 
Obs(2) 28 0 0 82 0 44 51 Obs(2) 185 -37  -37  225 40 135 182 
Z.p. 19 -1  0 18 0 20 19 

Si Calc 31 -1 0 31 0 30 31 Andalusite (1273 K) 
Obs(1) 34 0 0 39 0 42 38 All Calc 273 76 0 166 0 102 180 
Obs(2) 22 0 0 76 0 39 46 Obs(2) 330 112 0 244 0 109 228 
Z.p. 15 0 0 15 0 15 15 AI2 Calc 140 - 8  0 123 0 154 139 

O(A) Calc 63 -10  0 35 0 38 45 Obs(2) 130 3 0 187 0 141 153 
Obs(1) 63 - 5  0 47 0 51 54 Si Calc 114 - 5  0 116 0 112 114 
Obs(2) 55 - 9  0 88 0 47 63 Obs(2) 130 0 0 155 0 125 137 
Z.p. 33 - 4  0 21 0 24 26 O(A) Calc 236 -40  0 119 0 133 163 

O(B) Calc 39 - 9  0 42 0 37 39 Obs(2) 225 -44  0 184 0 i 53 187 
Obs(1) 47 -13 0 62 0 50 53 O(B) Calc 139 -36  0 150 0 125 138 
Obs(2) 34 -18  0 98 0 48 60 Obs(2) 169 -59  0 234 0 145 183 
Z.p. 22 - 5  0 25 0 23 23 O(C) Calc 124 8 0 115 0 443 227 

O(C) Calc 36 2 0 34 0 111 60 Obs(2) 126 19 0 168 0 479 258 
Obs(1) 39 2 0 44 0 130 71 O(D) Calc 188 -43 -26  191 31 122 167 
Obs(2) 31 6 0 85 0 135 84 Obs(2) 222 -56  -50  256 44 160 213 
Z.p. 20 2 0 20 0 46 29 

O(D) Calc 51 - 10 - 6  52 8 35 46 Kyanite (298 K) 
Obs(1) 59 -14  -10  66 13 50 58 All Calc 31 9 6 39 5 27 32 
Obs(2) 49 -12  - 9  101 1 ! 47 66 Obs(2) 30 18 - 9  58 2 65 52 
Z.p. 28 -3  - 3  28 4 21 26 AI2 Calc 38 11 7 30 1 28 32 

Obs(2) 43 23 - 9  46 - 6  68 53 
Andalusite (673 K) 
A11 Calc 146 40 0 90 0 55 97 

Obs(2) 160 47 0 145 0 63 123 
AI2 Calc 76 - 4  0 67 0 83 75 

Obs(2) 65 - 3  0 117 0 84 89 
Si Calc 62 - 2  0 63 0 61 62 

Obs(2) 62 0 0 104 0 72 79 
O(A) Calc 127 -21 0 65 0 73 88 

Obs(2) 123 -19  0 120 0 86 110 
O(B) Calc 76 -19  0 82 0 69 76 

Obs(2) 80 -28 0 142 0 89 104 
O(C) Calc 68 4 0 64 0 237 129 

Obs(2) 71 6 0 123 0 255 150 
O(D) Calc 102 -23 -14  104 17 67 90 

Obs(2) 117 -25 -24  164 24 91 124 

AI3 Calc 36 9 9 27 5 34 32 
Obs(2) 39 20 - 7  43 0 76 53 

A14 Calc 37 12 7 28 5 34 32 
Obs(2) 41 20 - 7  43 4 76 54 

Si I Calc 27 7 6 26 2 26 26 
Obs(2) 27 18 - 7  37 0 66 44 

Si2 Caic 27 8 5 25 2 25 26 
Obs(2) 25 18 - 13 40 - 2  60 43 

O(A) Calc 36 6 4 28 3 42 37 
Obs(2) 50 18 -13  49 - 4  91 66 

O(B) Calc 33 I 0 7 31 4 32 32 
Obs(2) 41 15 - I  1 52 2 66 56 

O(C) Calc 44 10 4 31 5 31 36 
Obs(2) 55 21 - 9  58 2 77 65 

O(D) Calc 44 15 14 35 9 35 36 
Andalusite (873 K) Obs(2) 59 26 2 49 10 82 63 
AI 1 Calc 188 52 0 115 0 71 125 O(F) Calc 33 8 5 32 3 30 32 

Obs(2) 213 66 0 177 0 77 156 Obs(2) 43 18 -17  55 -10  72 60 
AI2 Calc 97 - 6  0 85 0 106 96 O(G) Calc 42 10 13 35 - 3  34 36 

Obs(2) 83 - 6  0 142 0 102 109 Obs(2) 62 23 - 4  55 - 4  82 67 
Si Calc 79 - 3  0 80 0 77 79 O(H) Calc 41 14 4 38 - 3  31 37 

Obs(2) 80 3 0 123 0 89 97 Obs(2) 59 33 - 6  66 - 4  71 65 
O(A) Calc 163 -28  0 83 0 93 113 O(K) Calc 32 i 4 5 43 2 32 35 

Obs(2) 148 -28 0 142 0 109 133 Obs(2) 52 33 - 9  63 2 77 64 
O(B) Calc 97 -25 0 104 0 88 96 O(E) Calc 35 14 I I 33 6 43 36 

Obs(2) 99 -37 0 174 0 105 126 Obs(2) 57 28 0 55 12 77 62 
O(C) Calc 87 6 0 81 0 305 158 O(M) Calc 32 4 8 37 I 33 35 

Obs(2) 99 12 0 139 0 336 191 Obs(2) 46 15 - 7  58 - 4  83 65 
O(D) Calc 130 -29  -18  132 22 85 116 

Obs(2) 151 -34  -33 199 31 113 154 Obs(l): our data at 295K; Obs(2): WG; Calc: our calculated values. 
The labelling of the atoms is the ,same as in WG. For all the 

Andalusite (1073 K) experimental data shown in this table, the reported standard deviations 
All Calc 231 64 0 141 0 86 153 are of the order of the last digit, or even considerably lower. In 

Obs(2) 265 84 0 212 0 92 190 particular, the e.s.d. 's for our data in each case are below 0.0002,~, 2. 
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Table 6. Bond distances (~4) at different temperatures, uncorrected (from WG) and corrected for thermal motion 

T (K) 

Standard deviations are c a  0.002-0.004 ~, 

298 673 873 1073 1273 
Uncorrected Corrected Uncorrected Corrected Uncorrected Corrected Uncorrected Corrected Uncorrected Corrected 

AI1--O(A) 1.827 1.831 1.828 1.836 1.828 1.838 1.829 1.841 1.831 1.846 
All --O(B) 1.891 1.895 1.892 1.899 1.892 1.901 1.893 1.904 1.893 1.906 
AII--O(D) 2.086 2.089 2.112 2.117 2.126 2.132 2.138 2.145 2.154 2.163 
Average 1.935 1.938 1.944 1.951 1.949 1.957 1.953 1.963 1.959 1.972 
AI2--O(A) 1.816 1.820 1.818 1.825 1.821 1.830 1.823 1.833 1.823 1.836 
AI2--O(C) 1.839 1.844 1.845 1.854 1.846 1.856 1.851 1.866 1.853 1.870 
AI2-- O(C) 1.899 1.903 1.907 1.915 1.909 1.919 1.913 1.925 1.922 1.936 
AI2--O(D) 1.814 1.818 1.816 1.823 1.816 1.825 1.817 1.828 1.818 1.831 
Average 1.836 1.841 1.840 1.847 1.842 1.851 1.844 1.856 1.847 1.861 
Si--O(B) 1.645 1.648 1.646 1.651 1.647 1.653 1.646 1.654 1.650 1.659 
Si--O(C) 1.618 1.622 1.616 1.624 1.619 1.629 1.619 1.631 1.618 1.632 
Si--  O(D) 1.630 1.633 1.629 1.635 1.630 1.638 1.629 1.638 1.628 1.639 
Average 1.631 1.634 1.630 1.636 1.632 1.640 1.631 1.640 1.631 1.642 

A slight systematic overall disagreement can be 
noticed, since in general the calculated values are 
smaller than our corresponding observed data. However, 
the theoretical estimates of ADP's and those of 
thermodynamic functions are strongly connected [see 
equations (1)--(4)] and on these grounds if the calculated 
ADP's were underestimated, then the calculated 
values of thermodynamic functions would also be 
underestimated, just contrarily to what actually happens. 
For this reason, more than to inadequacies of our 
lattice-dynamical model, the slight systematic overall 
disagreement might be due instead to a number of 
circumstances and, in particular, to an unsatisfactory 
accounting of the absorption, extinction or background 
effects. 

Some systematic disagreement can also be noticed, 
particularly in the U22 parameters observed by WG; here 
for all the atoms and at all temperatures the observed 
values are consistently higher than the corresponding 
calculated estimates by an almost constant value 
(0.0060 A2). In our opinion such a situation derives from 
experimental errors and very probably to inadequate 
correction for absorption or extinction. In WG's work 
the data were obtained from a spherically ground crystal 
250m in diameter and no correction for these effects 
was performed; a possibility is that the diameter of the 
sample was not constant. The presence of systematic 
experimental errors in WG's data is confirmed by our 
own experimental results, where all the U22'S are much 
closer to the corresponding calculated values and are 
quite different from those of WG. 

In Table 5 the zero-point (z.p.) contribution, evaluated 
according to our calculations, is also reported for each 
component of the U tensors. As with all the silicates and 
oxides we have examined so far, this contribution (about 
one half of the room-temperature value) is remarkably 
large and far from being negligible. Unfortunately, for 
minerals too few reliable measurements at very low 
temperature are available to be able to verify our theoret- 
ical predictions; in any case, our estimates for minerals 

Table 7. Values of thermodynamic functions (J mol-l K -1) 

T(K) Sob s S~a,¢ Cpobs Cma,~ 

Andalusite 
100 12.53 I I. 10 29.70 31.86 
120 18.95 17.96 41. l I 43.71 
140 26.14 25.58 52.47 55.52 
180 41.94 42.27 73.86 7?.73 
200 50.25 50.99 83.79 87.83 
240 67.11 68.64 101.3 105.8 
280 83.89 86.11 116.4 120.9 
298 91.39 93.83 122.6 126.6 
320 100.3 103.1 128.9 133.4 
350 112.2 115.4 136.9 141.3 
380 123.7 127.3 144.0 148.3 

146.6" 
400 135.0 150.7 152.4 
450 159.4 
485 164.4 

Kyanite 
100 8.26 6.49 23.17 23.83 
120 13.48 11.83 34.52 35.24 
140 19.69 18.16 46.41 47.17 
180 34.17 32.86 69.51 70.41 
200 42.04 40.83 80.16 81.13 
240 58.38 57.37 99.09 100.2 
280 74.88 74.07 115.0 116.3 
298 82.30 82.80 121.6 122.7 
320 91.12 90.50 128.1 129.6 
350 103.0 102.5 136.6 138.0 
380 114.5 114.2 143.7 145.3 

The Cp - 6", differences and the corrections to the calculated value of 
entropy (PDG96b) have been obtained using the data concerning 
thermal expansion and compressability reported by WB for andalusite, 
and by WG and Brace, Scholtz & La Mori (1969) for kyanite. The 
crystal data used in our calculations correspond to our own at room 
temperature. For andalusite and kyanite, the observed thermodynamic 
data up to 380K are taken from Robie & Hemingway (1984); above 
this temperature, from Salje (1986). *From Salje (1986) at 380K. 

confirm the experimental results obtained by Smith, 
Artioli & Kvick (1986) and also, more recently, by 
Pavese, Artioli & Prencipe (1995). 

Another interesting observation can be drawn con- 
cerning the possibility of correcting the bond distances 
for thermal motion. According to Johnson (1970, 1980) 
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Ag 

Table 8. Vibrational spectra of kyanite (cm -1) 

Obs 302 325 
Calc 200 211 237 259 270 285 297 313 315 324 
Obs 360 386 405 419 437 
Calc 334 342 366 380 384 392 414 416 425 445 
Obs 486 562 
Calc 467 481 482 487 498 530 542 561 569 577 
Obs 669 
Calc 583 607 634 650 667 673 689 705 712 726 
Obs 952 
Calc 903 913 944 955 965 970 981 1003 

Observed Raman data from Mernagh & Liu (1991). 

and Scheringer (1972) we have 

r,. = r,, + [tr(Z) - rl, Zro/r2]/2r,,, (13) 

where rc and r,, are the corrected and the uncorrected 
distances between the atoms i and k, respectively, ro is 
the vector corresponding to the atomic distance and Z 
is a matrix defined as 

Z -- U i q- U k - U i k  - -  U k i  , (14) 

in which besides the ADP tensors Ui = <ui Ui t> and 
Uk = <uk ukt>, we also have the correlation tensors 
Uik's = <ui ukt>, which cannot be obtained from Bragg 
diffraction measurements. However, all these tensors can 
be evaluated from lattice dynamics together with the 
usual U's  [see, for instance, Willis & Pryor (1975), 
equation 4.86b, where polarization vectors for different 
atoms should replace those for the same atom] and if 
our calculations provide acceptable agreement with the 
experimental U's, in view of the close similarity in the 
calculating procedure and routines, there is also good 
reason to believe the estimates of the correlation tensors 
Uik to be correct. 

On applying these considerations and procedures to 
the bond distances, starting from the crystal structure 
data at the temperatures reported by WG, and using 
our lattice-dynamical estimates for Uik's and U's, we 
obtained the corrected distances for andalusite at various 
temperatures, as reported in Table 6. As with other 
silicates we have examined (PDG90c; PDG95), and with 
quartz (PDG94), the correction amounts to a few thou- 
sandths of an/~ (0.003-0.004 A at room temperature up 
to ~ 0.015/~, at 1273 K). Here, especially for the S i - -O  
bonds, the situation is similar to that which we already 
observed for diopside (PDG96b): the uncorrected values 
remain almost constant, at least up to ca 1000 K, whereas 
the corrected values increase on increasing temperature. 
This phenomenon can be ascribed to an essential rocking 
motion of the almost rigid SiO4 tetrahedron, which tends 
to lower the values of the uncorrected distances, similar 
to that which usually happens in rigid molecules: here, 
this apparent shrinkage almost equals the increase in the 
real values of the S i - -O bond lengths, which takes place 
on increasing the temperature. 

Such a situation is somewhat different from our 
results for fayalite (PDG95), where the corrected 
values of the S i - -O bonds seem to remain virtually 
temperature-independent. However, in the olivine group 
the SiO4 tetrahedra are hard isolated units surrounded 
by relatively soft M g - - O  bonds, which are those more 
affected by thermal expansion; whereas in diopside 
the tetrahedra are linked together and in andalusite 
the AI---O bonds are stronger than the M g - - O  bonds: 
for this reason, for diopside and andalusite, thermal 
expansion is more likely to affect the whole structure. 
Furthermore, some attention should also be given 
to the lower accuracy of the ADP's  (and also of 
crystallographic data in general) concerning the structure 
of the minerals of the olivine group at different 
temperatures (see PBG90c, PDG95 for a more detailed 
discussion). 

Calculated values of thermodynamic functions, such 
as the specific heat Cp and entropy S, at different 
temperatures according to our model and procedure are 
reported in Table 7: here they are compared with the 
corresponding experimental values obtained by Robie & 
Hemingway (1984) or Salje (1986). Since there are no 
data for either the volume expansion coefficient c~ or for 
the bulk modulus KT- at low temperature, no calculations 
have been performed below 100 K and above such a 
temperature both o~ and Kr were considered to be con- 
stant. The agreement for either Cp and S is fairly good: 
for instance, at room temperature (298 K) the difference 
between these calculated values and the corresponding 
experimental data is 3.3 and 2.7%, respectively, and the 
situation remains satisfactory over the whole range of 
temperatures. This is another proof of the reliability of 
lattice-dynamical calculations and of our procedure in 
particular. The excellent results found for a group of 
silicates by other authors, such as Winkler, Dove & 
Leslie (1991) and Patel, Price & Mendelssohn (1991), by 
lattice dynamics, concerning transferability of empirical 
potentials within a wide group of substances, are also 
confirmed. 

5. Sillimanite and kyanite 

Besides andalusite, there are two more phases of the 
compound A12OSiOa widely occurring in nature as min- 
erals: sillimanite and kyanite. Since it is not uncommon 
for all three minerals to occur together in the same rock, 
such an occurrence is a classic natural example of a 
triple point and a notable number of mineralogical and 
petrological papers have been dedicated to the subject 
[see, for instance, Salje (1986) for details and a list of 
useful references]. Differently from andalusite, where 
the two independent Al atoms in the crystal structure 
are, respectively, six- and fivefold coordinated, in silli- 
manite there are also two independent Al atoms, having, 
however, six- and fourfold coordination, respectively, 
whereas in kyanite there are four independent A1 atoms, 
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all of them with a sixfold almost octahedral coordination. 
Since the crystal structures of these phases have also 
been determined (see, for instance: WG; Peterson & 
McMullan, 1986) and for kyanite even at different 
temperatures (WG), in view of the possible extensive 
application of our potentials and of lattice dynamics in 
general, we tried to apply our routines and potentials to 
both sillimanite and kyanite. 

For sillimanite some of the calculated frequencies are 
imaginary and, therefore, our potentials are not accept- 
able. A plausible explanation concerns the presence of 
the four-coordinated A1 atom, whose set of bonds (with 
oxygen) is notably different from the usual set (bond 
lengths and angles) of A1--O bonds occurring in all 
the other minerals we have considered so far in our 
calculations and to which our potentials have been fitted. 

For kyanite, where all the AI atoms instead show 
a sixfold coordination, the calculated frequencies are 
very reasonable throughout the whole Brillouin zone: 
however, the symmetry is triclinic (Pi)  and there are 
only two possibilities for the symmetry of the Raman- or 
IR-active vibrational modes (i.e. Ag and Au, respectively) 
at the origin. As a consequence, and also because a 
considerable number of independent atoms in the unit 
cell (Z= 8) are present, an almost continuous series of 
frequencies in the 100-1000 cm -~ interval for both the 
Ag- and the A,,-modes is expected, so that no useful 
comparison with the experimental data can be carried 
out. Such a situation is evident on looking at Table 8, 
where the calculated frequencies are compared with the 
(very few) peaks in the Raman spectrum observed by 
Mernagh & Liu (1991), which are the only experimental 
data of this kind available in the literature for kyanite. 

Calculated estimates of entropy S and of the specific 
heat Cp are shown in Table 7; at room temperature; 
the disagreement with the corresponding experimental 
values is 0.6% for S and 0.9% for Cp, and these remain 
almost the same for a wide range of temperatures. At 
100 K, or just above this temperature, the discrepancy 
between the observed data and our theoretical estimates 
is greater; however, such a situation is not surprising on 
considering our assumption of the constant expansion 
coefficient c~, which does not hold especially at low 
temperature (see above). In any case, it is interesting 
to notice that our vibrational model clearly accounts for 
the notable entropy difference between andalusite and 
kyanite. 

With respect to the ADP's, no agreement with the 
experimental values has been achieved: an example is 
given in Table 5 where the data obtained by WG from 
crystal structure refinement at room temperature are 
reported together with the results of our calculations. The 
difference is quite striking, especially if compared with 
the case of andalusite. However, almost all the observed 
data are about twice as great as the corresponding 
calculated estimates (see, for instance, the equivalent 
B's) and, if our calculations were inadequate, then our 

estimates of thermodynamic functions would also be 
largely in error (see above: here they should be by far too 
small), owing to the strong theoretical link between these 
quantities; instead, our estimates for thermodynamic 
functions at various temperatures are excellent (see Table 
7). 

Since, as we have seen, the experimental values of 
the U's for kyanite are inconsistent with thermodynamic 
data, and the crystallographic results are likely to be 
seriously affected by errors (see above), our calculated 
U's in Table 5 for this mineral are reported mainly as 
theoretical predictions, in want of adequate experimental 
confirmation. 

6. Conclusions 

Our application of harmonic lattice dynamics to 
andalusite and (at least in part) to kyanite confirms the 
possibility of deriving ADP's, vibrational frequencies 
and thermodynamic functions using a routine procedure 
and transferable empirical potentials. In particular, for 
all these applications here the rigid-ion model seems 
to afford results whose quality is comparable to that 
provided by more complex models, such as the shell 
model. 

With respect to other statistical-mechanical proce- 
dures, such as that proposed by Kieffer (1979a,b; 1980), 
which has been extensively applied to minerals, the 
Born-von Karman lattice-dynamical model is not only 
more accurate, but no fit to a number of experimental 
specific data for a single phase is needed; for these 
reasons our opinion is shared by other authors, such as, 
for instance, WB. For all these uses, transferability of 
potentials (at least within certain groups of substances) 
is very important: if such a property is further con- 
firmed, and better sets are obtained, the possibility of 
deriving thermodynamic properties of a certain mineral 
starting from crystal structure data only might appear 
as definite. Such a derivation might take place even a 
priori if procedures of modelling crystal structures are 
adequately developed, thereby envisaging the possibility 
of predicting the existence of all the possible phases of 
a certain substance and their field of stability. Here a 
fundamental point is establishing what level of accuracy 
can be indeed attained: contrary to what appears to be a 
widespread belief, the problem does not only involve the 
limitations of the theoretical model and computational 
routines, since in the vibrational spectral data currently 
available there still are a consistent number of errors in 
establishing and measuring the fundamental frequencies, 
especially the lowest ones, and unfortunately there is 
also a fundamental lack of measurements of phonon 
dispersion curves. For all these reasons, there is no 
question about the possibility of a notable improvement 
of the calculated results and potentials, even if the same 
method and routines we have used so far are continued 
to be used in the present stage. 
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Another interesting aspect of our results is the good 
to excellent agreement between thermal parameters 
obtained from accurate crystal structure refinement and 
their theoretical counterparts. As with the similar con- 
clusions we have reached for organic molecular crystals 
(Gramaccioli, 1987, 1992; Filippini & Gramaccioli, 
1989, and references therein) and for other minerals 
(see the Introduction), besides confirming the physical 
significance of such crystallographic data, if obtained 
from accurately refined structures, this agreement 
supports the validity of a parallel evaluation of 
correlation tensors between the displacement of different 
atoms, thereby permitting bond length correction for 
thermal libration in a general case, which until quite 
recently has only been mentioned as a theoretical 
possibility. 

Whenever the agreement with the experimental data 
is not quite satisfactory, then a reasonable explanation 
can always be found: in any case so far observed, 
the explanation does not affect the general validity 
of the theoretical routine followed here. For instance, 
the impossibility of having reasonable results for sil- 
limanite is almost certainly connected with the pres- 
ence of fourfold-coordinated aluminium; similarly, for 
andalusite, the somewhat inferior quality of the esti- 
mates of thermodynamic functions might be due to the 
need for an adequate reconciling of the requirements 
of the potentials involving five- or six-fold coordinated 
aluminium. The disagreement concerning the U22's in 
andalusite is most probably due to absorption and the 
general disagreement for kyanite is almost certainly due 
to the insufficient good quality of the crystals, especially 
if the ADP's  and not only the atomic coordinates of 
good quality are needed. For kyanite and andalusite 
the disagreement in thermodynamic properties at low 
temperature is explained by the lack of measurements 
of the thermal expansion coefficient ~ (and of the 
bulk modulus): under these conditions, especially lor 
~, the values are notably different from those at room 
temperature. A similar situation has occurred in our 
former works on the subject (see, for instance, PDG94, 
PDG95, PDG96a,b): although sometimes the depen- 
dence on temperature of at least the expansion coefficient 
~ was known, a correction according to expression (12) 
was never applied. 

As a last remark, since the displacements at 0 K are 
far from negligible, in general the physical signilicance 
of models with stationary atoms at 0 K should be con- 
sidered with caution, whilst having a clear and precise 
idea about the applications for which they are intended 
to be used. 
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